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Branching Processes with Iﬁmigration
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Howard J. Weiner
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1. Introduction.

(1.1) Let Z(t) denote the number of cells alive at time + in a
standard critical age-dependent branching process ([1], Chapter
L) with absolutely continuous cell lifetime distribution

function

(1.2) a(t) , G(0+) =0

and satisfying

1.3 0 =

(1.3) < u fo £dG(t) .
Let

(1.%) g(t) = a6 (%)

be the density of G. Assume

(1.5) foo tb+ug(t) dt < o
0

with b given by (1.15).



At the end of each cell life, the original cell disappears, and is

replaced by k new cells with probability P >0 and
o]

(1.6) Lp =1,
k=0

satisfiying criticality

o0
(1.7) ¥ kp, = 1 .
k=1
Let, for 0<s <1
© k
(1.8) h(s) = Z P, 8
k
k=0
and assume that, for some € > 0O,
(1.9) h(l+e) exists .

This guarantees, in particular, that for n > 1,

[e0]
(1.10) knpk exists
k=1

s =1 and

and that all derivatives of h(s) for 0 <s <1 exist at

can be evaluated by interchanging derivatives and summation.

Assume in addition that

(1.11) O<h"(1) .



(1.12) Let N(t) denote the total progeny born by time t in a

critical age-dependent process satisfying (1.1)-(1.11).

(1.13) Let Zo(t) denote the number of cells alive at + in a
cell immigration process in which new-born cells are
introduced at renewal epochs. The (random) time between

epochs is governed by a continuous distribution function

6o (), Go(0+) = 0

with

[60]
(1.1%) 0< My zf thO(t)

0]
and for

2pm0
(1.15) b = H_Ohvl—y (w1th Illo defined below)
that, as t =+ w,
b+2

(1.16) t (l-GO(t)) +0 .

At each renewal epoch, k new cells are introduced with probability

Poye and let, for 0 < s < 1l+e for some e >0

o k
(1.27) ho(s) = ké% Do’ <
and
(1.18) 0<m = hb(l)



and

hg(l) <ow, h"(l)<ow.
Each new cell introduced at a renewal epoch now is part of the process
and initiates, independent of all other cells and the immigration process,

a critical age-dependent branching process satisfying (1.1)-(1.11).

(1.19) Let Nb(t) denote the total progeny by time t of the

immigration process satisfying (1.1)-(1.18).

It is the purpose of this paper to show that for k >1, as t @,

c
(1.20) P{)k(t) =P[Zo(t)=k] ~ t_b
where
2wm0
b = = and
uoh @)

where ¢ > O denotes a constant which may depend on k and under the

additional hypotheses that

(1.21) Popy >0 all k>0,

and that there is a unique @ > 0 defined by

© «
(1.22) oo f e deO(y) =1
o



that, as t +», for k >0,

(1.23) Qg (8) = BIN, (8)=k] ~ ce™®

for c¢ (depending on k) some positive constant. A multi-dimensional

version and extension are indicated in Section 3.

2. Integral Equations.

For reference later, some results about Z(t) are listed. See
[1], Chapter L4, for example.
Let, for 0<s <1
(2.1) 528y = 5(s,t) .
Then, by notation (1.1)-(1.11)
t
(2.2) F(s,t) = s(1-G(%t)) +j h(F(s,t=u))ac(u) .
' 0
Under the hypotheses (1.1)-(1.11), denoting

(2.3) P (t) = Plz(t)=k] ,

then [3]

t
(2.4) Pl(t) l-G(t)+fO h’(l-P(t-u))Pl(t—u)dG(u)

and in general, for k > 2,

t
(2.5) Pk(t) fk(t) +j; h'(l-P(t-u))Pk(t-u)dG(u) ,



where

(2.6) P(t) = P[Z(t) > 0] .
By (1], [3 ]‘ respectively,

@.7) P(t) ~ (2u)(@" (1)6)™
and for k > 1,

%k

(2.8) SORE ¥

vhere Ck >0 1s a constant, possibly depending on k.

Denote, for 0 < s <1,

(2.9) F(s,t) = ms2(t) _ of: P[Z(t)=k]s" .
k=0
Z. (t) 0
(2.10) F,(s,t) = Es of - ¥ P[Zo(t)=k]sk .
k=0
(2.11) H(s,t) = BN (P) = OZO'_ PIN(t)=k]s .
k=1
N.(t) oo
(2.12) Hy(s,t) =Bs O = ¥ P[No(t)=k]sk .
k=0

Then the following theorem holds.

Theorem 1. Assume (1.1)-(1.18) hold. Then for k >0,

[s]
(2.13) P[zO (t)=k] ~ ;5

as

t-)oo,



where ¢ >0 depends on k.

Proof. By [2]

t
(2.14) Fo(s,t) = l-Go(t) +fo hO(F(s,t-u))FO(s,t-u)dGO(u) .

For £ > 0 an integer, denote by

(2.15) Poy (t) = P[Zo(t)z‘ﬂ]
(2.16) P, (t) = Plz(t)=£]
and

(2.17) P(t) = P[Z(t) > 01 .

From the assumptions we note that

2
(2.18) Zl"'a—zFo(s’t) = B, (t)
* Js 8=0
and
1 ¥
(2.19) = — F(s,t) =P, (t) .
2t ’ <0 J)

By (2.18) applied to (2.14) for £ =0

t
(2.20) Poo(t) = l-GO(t) +fo hO(1-P(t-u))Poo(t-u)dGO(u) .

Define



(t-u)

t v
Jr hO(l-P(t-u))R(t-u)e O au
0]

1
(2.21) R(6) = 1-Go(t) + ==

0

or . equivalently,

t
- — u
Ho t -
R(t) = 1-G,(t) + £ = J/; by (1-P(u))R(u)e bo du

Taking the derivative w.r.t. t in (2.21) and simplifying leads

to the differential equation

(1-h) (1-P(%)))

(2.22) R'(t) + R(t) = £(t)
Ho

where

(2.23) £(t) = o(t-b_g) .

Expanding l—ho(l-P(t)) in a Taylor series, using (2.7) and the
idea of the proof of Claim IV of ([3] pp 480-481), one may solve for

R(t) asymptotically to get
(2.2 ) R(t) ~ ct™ , where c >0

is a constant whose value may change from equation to equation. From

(2.20), (2.21),

t
(2.25) Poo(t)-R(t) =[o ho(l-P(t-u))(Poo(t—u)—R(t-u))dGo(u)

%
+fo ho (1-P(t-u))R(t-u) (G, (w)-dE(u))



where

.
Ho
(2.26) E(t) =1-e .
Define
(2.27) Alt) = |2y, (6) - R(8)]

Then, iterating (2.25) repeatedly, one obtains

(2.28) A(t) <A« Gy (8) + R |G-E| U, (t)

for all n,t, and the dots denote convolution integral, where GOH(t)

th

is the n"* convolution of GO with itself, and

o £
U (t) = } G, (t) ~=.
0 g=0 * Ho
Let n +w, then t + », and the law of large numbers and the properties
of R, G-E, Ub yield that

(2.29) tbA(t) +0 as t *ow.

This yields the result of Theorem 1 for Pbo(t).

The argument for Ebl(t) is similar and uses the result for Ibo(t).
The general result for an(t) follows by induction using Leibniz'
rule for successive differentiétion, and is omitted.
Remark: The proof of Theorem 1 of [3] on pp. 482-483 is incompletely

Justified and would go through by an argument as above.

9



Theorem 2. Assume (1.1)-(1.22) to hold. Then, for k >0 an integer

(2.30) QOn(t) = P[No(t)=k] ~ ce %

for some ¢ > O depending on k, where @ is as given in (1.22).

Proof. By arguments similar to those used to establish (2.1L4) by the

law of total probability,
t
(2.31) Ho(s,t) = l-GO(t) +j; hO(H(s,t—u))HO(s,t-u)dGo(u) .

The assumptions of the theorem allow derivatives with respect to

S to be taken under the summation sign in (2.11)-(2.12) and that for

£ >0,
(2.32) E—l,- -%i H(s,t) = PIN(t)=£] = Q, (¢)
" os g8=0
and
)

(2.35) L Sy (s,8)] = BIN.(t)=2] = Q. (),

2T o 0 0 04
and note that
(2.34) Qq(t) = P[N(t)=0] =0 .

Applying (2.32)-(2.34) to (2.31) for 4 = 0 yields

t
(2.35) 00 (8) = 1-6o(6) + B [ g (tulinga)

10



But (2.35) is in the standard form of the integral equation for
the mean number of cells at time t in a Bellman-Harris age-dependent
branching process with cell lifetime distribution function Gy (t) and
mean number of progeny per parent of 0 < pOO < 1, the suberitical
case. (See [1] pp 162-168). Hence [1] as t = o,

=0t
(2.36) Qo (8) ~ce™ ",

where ¢ > 0 may be explicitly evaluated [1], but since no general
tractable expression for corresponding constants in the asymptotic

form for QOz(t) seems obtainable, such constants will not be evaluated
explicitly, although this proof indicates how they may be obtained

recursively.

Applying (2.32)-(2.34) to (2.31) for 4 =1 yields
[ t t
@3T) oy (8) = By | 9 (b g (um)aty () + By [y (o)
which can be expressed in the form
t
(2.38) Q, (£) = £(t) +pOofO Qyy (t-=u)dG, (1) ,
where, from [1] and (2.37), it follows that, as t % =,
ot

(2.39) f(t) ~ce™ .

By Theorem 1 (i) of ([1] p. 145) and the argument of equation

(9)-(11) on page 146 of [1], one then obtains

11



ot

(2.40) Qup (8) ~ece™,

for a ¢ > O which may be evaluated, as indicated in the remark

following (2.37).

The rest of the argument proceeds by induction analogous to that

used in Theorem 1.

3. Multidimensionsl Case.

Let

(3.1) Zij(t) = the number of cells of type j at time ¢
starting with one new-born cell of type i at t = O
with 1<i<m in an m-type critical age-dependent
branching process described as follows. At time +t = 0,
one newly born cell of type i starts the process, for
some 1 <i<m. The cell lives a random time described
by a continuous distribution function

3.2) G (t), ¢ (0+) =0 .

At the end of its life, cell i is replaced by jl new daughter cells
of type 1, j2 new cells of type 2,...,jm cells of type m with
probability .. . . .. ..
1JlJ235 Im

Define the generating functions, for s = (sl,...,sm), 3 = (jl,...,jm),

J J :
- 1 m _
G3) hy(spreessy) =hy(s) = (5 Lo @ g S tsy =X Pijii'
JloooJm) l m J

12



Each daughter cell proceeds independently of the state of the system,
with each cell type Jj governed by Gj (t) and hj (s).

Assume, for 1+ e = (l+e,...,1+e) and 1 = (1,...,1), m-vectors,

G.4) hi(l+€) <w for 1<i<m.
This insures that all moments of by (s) evaluated at s =1 may
be computed by partial differentiations under the summation sign.

Define, for 1< i, j < m,

5.5) % (8) W

3.5 m, . = = h, . (1
i st 8=l ij'=

and assume

(3.6) m; 5 >0 all 1<i, j<m,

and let the first moment m x m matrix be

(3.7) M=(m,.) .

By standard Frobenius theory ([1], p. 185), there is a largest

eigenvalue in absolute value, denoted p, which is positive.

The basic assumption of criticality is that
G.7)(1) p=1.

It follows that there are strictly positive eigenvectors u > 0,

v > 0 such that (see [4]),

13



(3.7)(11)

=
il
(=]
=
il
1<

i1 1t
and
)
usuE u,v, =1
- T 3 22
Assume
(3.7)(1i1) Y
3.7 )(1iid o > >0 1<j, k<nmnm
asjask ’ - Y2 = =
Denote
- ; o omom aghi(_l_)
(3.7)(1v) Q(}i)sg {: E Z S5 5% uﬂurvi<°°’

vhere, for 1 <i<m, for a>0 (3.9)

(5.8)(3) f°° *ag, (6) <o
0

and denote, 0 <i<m

(3.8)(11) 0 <uy Efoo thi(t) s
0

where a >0 is given by

o m
Rog (i)uz)‘ R Vz}

£=1
(3.9) a TRIGY s

1

1k



3

with h, (1) = S5, h (1), assumed to exist.
Let

(3.10) Zg () = (23, (£),2,,08)5...,2, (8)) .
Let

(3.11) Ny (8) = (N (6,0, 5(6), 00,0, (%))

denote the m-vector with entries

(3.12) Nij(t) = total progeny of type j born by t in
the above critical m-type process starting with one

new cell of type 1.

An m-type branching process with immigration is defined as follows.

At renewal epochs with inter-arrival time continuous distribution

(3.13) Gy (t) 5

(3.14) Go(0+) = 0, Gy(t) <1 for all t >0,
satisfying

(5.15) % (1-6,(6)) 0 as & e

m-types of new cells are introduced such that there are il new cells

of type 1, i2 new cells of type 2,...,im cells of type m introduced
with probability op.. . « Denote
Ol,...,lm

15



(5.16) ho(s)= & Poiev.i 51 '8, = b By s,
1 m £

and assume

(3.17) ho<£ii) exists

for some € > 0.°

Each new cell of type i initiates an m-type critical age-dependent
branching process [1] independent of all other cells and of the renewal
process, satisfying (3.1)-(3.12).

Define, for 1 <1i < m,
(3.18) Zy; () and Noz (t)

to be the number of cells of type i alive at + and the total progeny
born by t, respectively, in the m-type branching‘process satisfying
(3.1)-(3.17), called an m-type critical age-dependent branching process

with immigrgtion.

Denote
(5-1_9) Z{)(t) = (ZOl(t)’ZOE(t)?""ZOm(t))
(3.20) Ny (t) = (Wyy (6),Np5(6), 000, Ny (8))

Theorem 3. Under assumptions (3.1)-(3.12), for k = (kl""’km) a

vector of non-negative integers, at least one of which is strictly

positive,

16



(3.21) lim +°P[z, (t)=k] = ¢ > O
t o L

(3.22) lim PN, (t)=k] =a >0
t *

where c,d are constants which may depend on i,k.

Proof. The proof follows the one-dimensional case using [4] and is omitted.

Theorem 4. Under assumptions (3.11)-(3.20), for ¢ = (Al,...,zm) a vector

of non-negative integers,

(3.25) lim tap[go(t)=z_] =¢>0
t

for some constants c.

If

(3.24) >0

Pog.

— —— — — S_————— ——————— ot

(5.25) 2 [ Mgy <1,
0
then
(3.26) lim eat P[%(t):ﬂ_] =e>0.
t »o

Proof. Theorem 4 follows from Theorem 53 in a proof similar to Theorems

1 and 2, respectively.

17



Remark: If the quantities Z, (t), N, (t), Z,(t), N,(t), k, £ in

Theorems 3 and 4 are replaced by corresponding marginal vectors of

- dimension 1 < d <m, the corresponding results of Theorems 3 and

4 hold and are of the same form, since the method of proof is the

same, with expressions of the same form.
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